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Abstract

The present study was to investigate some aspects of the 5-HT1A receptor system in adult-aged rats (50–60 days) that were either

exposed to prenatal stress (PS) or not exposed to prenatal stress (CON). In the first series of experiments, rats were pretreated with vehicle,

the 5-HT1A agonist 8-OH-DPAT or the 5-HT1A antagonist, WAY-100635 and exposed to 120 acoustic startle stimuli (95 dB) using a 30 s

inter-trial interval. 8-OH-DPAT produced a dose-dependent increase in acoustic startle responding in CON and PS rats, with the PS rats

exhibiting greater responding than CON rats. WAY-100635 depressed startle amplitudes only in the CON group. Finally, radioligand binding

studies using [3H]-8-OH-DPAT indicated a significant decrease in receptor density in hippocampal homogenates from PS rats but no

difference in [3H]-8-OH-DPAT binding from homogenates of the amygdala. Our results are consistent with earlier reports indicating that

prenatal stress alters the serotonergic system. Specifically, our results indicate that gestational exposure to chronic mild stress enhances startle

amplitudes following 8-OH-DPAT administration, prevents the depression in startle amplitudes following WAY-100635 administration and

reduces [3H]-8-OH-DPAT binding in hippocampal preparations.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Stressful early life experiences impact behavioral out-

comes for adult-aged animals in several mammalian species,

including humans and rodents (Weinstock, 1997, 2001;

Kofman, 2002). In rodents, prenatal stress alters a variety of

fear-related behaviors. Prenatally stressed rats spend less

time in the center of an open-field (Meisel et al., 1979;

Vallee et al., 1997; Lehmann et al., 2000), show increased

behavioral inhibition to footshock and conditioned cues

(Takahashi et al., 1992; Griffin et al., 2003), and increased
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defensive withdrawal (Ward et al., 2000). Alterations in

neurobiological systems associated with fear-related behav-

iors have also been reported. For example, following

footshock, plasma norepinephrine levels are greater in PS

rats (Weinstock et al., 1998). Our laboratory has reported

increased corticotropin-releasing hormone (CRH) content

and release from amygdala minces (Cratty et al., 1995; Ward

et al., 2000) as well as expansion of the lateral amygdala in

adult PS rats (Salm et al., 2004). Evidence suggests that the

altered neurobiology of the PS rats develops from exposure

of the fetus to high plasma levels of endogenous glucocorti-

coids released by the mother under chronic stress (Barba-

zanges et al., 1996; Weinstock, 1997; Welberg and Seckl,

2001; Avishai-Eliner et al., 2002; Griffin et al., 2003). In

fact, adrenalectomy of prenatally stressed dams blocks the

persistent elevation of plasma corticosterone in adult PS rats

after restraint stress (Barbazanges et al., 1996), implicating

high levels of circulating maternal corticosterone in the

long-term effects of prenatal stress in adult offspring.
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Adult and juvenile PS rats have a hyperactive hypo-

thalamic–pituitary adrenal (HPA) axis, reflected by higher

and more prolonged levels of corticosterone compared to

CON rats (Peters, 1982; Henry et al., 1994; Barbazanges et

al., 1996; Vallee et al., 1997; Weinstock et al., 1998;

Morley-Fletcher et al., 2003). Corticosterone plays a

critical role in the generation of fearful behaviors and

plays an important role in the heightened fear responses of

PS rats (Takahashi et al., 1990; Korte, 2001). Taken

together, these behavioral and neurobiological observations

form the basis of a general hypothesis that PS offspring are

inherently more fearful than offspring from non-stressed

pregnancies.

Serotonergic cell bodies are detectable in the brainstem

of rats by gestational day 12 (Aitken and Tork, 1988),

suggesting that this system could be vulnerable to the effects

of prenatal stress. Indeed, previous studies found that PS

rats displayed more ‘‘wet dog shakes’’ (i.e. serotonin

syndrome) than CON rats when challenged with several

doses of 5-hydroxy-l-tryptophan (Peters, 1986a). It was

also reported that [3H]5-HT binding was increased in cortex

and decreased in hippocampus of PS rats (Peters, 1986b).

The greater 5-HT receptor density in the cortex of PS rats

may be due, in part, to increased 5-HT1A receptor

expression, since it was previously reported that PS rats

have increased levels of 5-HT1A mRNA in cortical

preparations (Morley-Fletcher et al., 2004). Finally, a recent

report found that the putative serotonin reuptake enhancer,

tianeptine, reduced immobility time in the forced swim test

in PS rats but not in CON rats (Morley-Fletcher et al.,

2003). These reports support the idea that the serotonergic

system is altered by prenatal stress.

5-HT1A receptors are a subclass of serotonin receptors

involved in the complex phenomenon of fear-related

behaviors. 5-HT1A receptors have been implicated in

anxiolytic responses of the social interaction test and

elevated plus maze (Dawson et al., 1995; Remy et al.,

1996; Collinson and Dawson, 1997) and anxiogenic

responses acoustic startle and social interaction tests

(Svensson, 1985; File et al., 1996; De Almeida and Lucion,

1997) using the prototypical 5-HT1A agonist, 8-OH-DPAT

(Hoyer et al., 1994). Whether the response to 8-OH-DPAT

is anxiogenic or anxiolytic appears to depend on the route

of administration and which receptor pool is preferentially

activated. Nevertheless, it is clear that 5-HT1A receptors

participate in modulating fear-related behaviors.

The present study was to investigate the effects of 8-OH-

DPAT and WAY-100635 on acoustic startle responding in

CON and PS rats. 8-OH-DPAT is a selective agonist for 5-

HT1A receptors, having low nanomolar affinity for 5-HT1A

receptors but only micromolar affinity for 5-HT7 receptors

(Wood et al., 2000). The 5-HT1A antagonist, WAY-100635,

has nanomolar affinity for the 5-HT1A receptor (Hoyer et

al., 1994; Gozlan et al., 1995). We hypothesized that 8-OH-

DPAT would increase acoustic startle responding in CON

and PS rats as previously reported (Svensson, 1985; Czyrak
et al., 2003). Since elevated startle responding is generally

considered an anxiogenic response (Koch, 2000), we further

anticipated that 8-OH-DPAT modulated startle responding

in PS rats would be greater than CON rats. We hypothesized

that the antagonist, WAY-100635, would depress startle

responding as reported earlier (Joordens et al., 1998) and,

perhaps, to a greater degree in the PS rats.

A second objective was to examine [3H]-8-OH-DPAT

binding in homogenates of the hippocampus and amyg-

dala from PS and CON rats. Since PS rats have a

dysregulated HPA axis resulting in higher levels of

circulating glucocorticoids and systemically administered

glucocorticoids decrease 5-HT1A density in the hippo-

campus (Takao et al., 1997; Czyrak et al., 2003), we

hypothesized that 5-HT1A receptors would be reduced in

the hippocampus. In the amygdala, activation of 5-HT1A

receptors have been associated with anxiolytic responses

(De Almeida and Lucion, 1997) and reductions in

excitatory neurotransmission (Cheng et al., 1998); thus,

considering the heightened fear responses of PS rats, we

hypothesized a reduction in 5-HT1A receptor density in

the amygdala of PS rats.
2. Methods

2.1. Animals

Male (225–250 g) and female (200–225 g) Sprague–

Dawley rats were purchased from Hilltop Labs, Inc.

(Hilltop, PA). All rats were maintained on a 12 h light

cycle (lights on 0700 hours) with food and water available

ad libitum. All rats were housed in the AAALAC

approved animal quarters at the Robert C. Byrd Health

Sciences Center. Finally, all procedures had the approval of

the Institutional Animal Care and Use Committee (Proto-

col 9905–06) and were conducted in accordance with the

1996 NIH Guide for the Care and Use of Laboratory

Animals.

2.2. Induction of prenatal stress

The prenatal stress procedure was conducted as pre-

viously described (Ward et al., 2000; White and Birkle,

2001; Griffin et al., 2003; Salm et al., 2004). Briefly, male

and female rats were paired and the appearance of a vaginal

plug indicated gestational day 0. The females were

separated and either not manipulated (CON) or stressed

(PS) once daily from gestational day 14 through birth.

During the stressing procedure, the dam was removed from

her home cage, placed in a new cage for enough time to

give a subcutaneous saline (0.9%) injection (0.1 ml) at the

nape of the neck and then returned to her cage. The

occurrence of the stressing procedure was randomly timed

each day during the light phase and performed by different

personnel to prevent habituation. Males were weaned at
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Fig. 2. Mean acoustic startle amplitudes in CON (open bars) and PS rats

(closed bars) treated with vehicle or 16 mg/kg 8-OH-DPAT (i.p.). This dose

significantly increased acoustic startle amplitudes in CON and PS rats

(*p <0.05) and the increase was greater in the PS rats (#p <0.05) (n =8 per

group, representing 4–5 independent litters).

W.C. Griffin III et al. / Pharmacology, Biochemistry and Behavior 81 (2005) 601–607 603
postnatal day 21 and housed as sibling pairs with free

access to food and water.

2.3. Acoustic startle testing

Acoustic startle testing began on the male offspring

(50–60 days) using 4 computer controlled startle cabinets

from Med Associates, Inc. (Georgia, VT) with methods

previously described (White and Birkle, 2001). The

cabinets are equipped with peizo-electric transducers that

convert animal movement into voltage readings. The

transducers were calibrated daily according to the manu-

facturer’s instructions. The startle stimuli consisted of 95

dB white noise bursts (50 ms duration) delivered every 30

s for 1 h. Peak startle amplitudes were recorded during a

250 ms period following noise burst onset. For the

experiments shown in Figs. 1 and 3, drugs were

administered such that each rat received vehicle and each

of the doses in a randomized cross-over design. A washout

period of 48 h occurred between sessions. After a 2 week

washout period, some of the rats used to generate data in

Fig. 1 were used to examine the effects of WAY-100635

on acoustic startle responding (Fig. 3). Behaviorally naı̈ve

rats were used to generate the data in Fig. 2 using a

between-groups design.

2.4. Drug administration

8-OH-DPAT HBr (Sigma, Inc) and WAY-100635 Mal-

eate (Sigma, Inc) were dissolved in saline (0.9%) and

administered intraperitoneally (i.p.) 15 min prior to the

acoustic startle test sessions. All rats were habituated to the

injection procedure prior to each experiment by administer-

ing saline (0.9%, i.p.) once daily for 3 days.
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Fig. 1. Mean acoustic startle amplitudes in CON and PS rats treated with 8-

OH-DPAT (0, 0.08, 0.8 and 8 mg/kg, i.p.), a 5-HT1A agonist. Vehicle

treatment responses are indicated by square symbols and were not different

[n PS, g CON]. Circular symbols represent responses to drug [? PS, >
CON]. 8-OH-DPAT increased acoustic startle amplitudes at the highest dose

in the PS rats (*p <0.05), but did not increase amplitudes in the CON rats.

PS rats had larger amplitudes than CON rats (#p <0.05) at the 8 mg/kg dose

(n =11 per group, representing 6 independent litters).
2.5. Radioligand binding

Hippocampus and amygdala were block dissected from

behaviorally naı̈ve adult male CON and PS rats aged 50–60

days (Glowinski and Iversen, 1966) and homogenized in 3.5

ml of 320 mM sucrose and 5 mM Tris–HCl at pH 7.4. The

homogenates were centrifuged at 100 �g for 10 min at 4

-C. The supernatant was centrifuged at 70,000 �g for 25

min at 4 -C and the pellet resuspended in 10 volumes of 50

mM Tris–HCl at pH 7.4. Aliquots were frozen at �80 -C.
For radioligand binding, aliquots of membranes (50–80 Ag)
were incubated for 30 min at room temperature with 50 mM

Tris–HCl (pH 7.4) containing various concentrations of 3H-

8-OH-DPAT (0.10–50 nM) (NEN Dupont, Inc). The

reaction was terminated by rapid filtration over Whatman

GF/B filters followed by 3 washes with 3.5 ml of ice-cold

buffer. Non-specific binding was determined in the presence
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Fig. 3. Mean acoustic startle amplitudes in CON and PS rats treated with

WAY-100635 (0, 0.8 and 8 mg/kg, i.p.), a 5-HT1A antagonist. Vehicle

treatment responses are indicated by square symbols and were not different

[n PS, g CON]. Circular symbols represent responses to drug [? PS, >
CON]. WAY-100636 depressed startle amplitudes at the highest dose in the

CON rats (*p <0.05) but did not have an effect on startle amplitudes in the

PS rats (n =6 per group, representing 3 independent litters).



Table 1

Region Group# [3H]-8-OH-DPAT binding

Bmax (fmol/mg prot) KD (nM)

Hippocampus PS 105.2T11* 4.5T1.4

CON 139.0T13 5.8T1.5

Amygdala PS 50.2T5 4.5T1

CON 48.1T15 6.9T4

Values are meansTS.E.M. #n =5–6 per group, representing 2–3 independ-

ent litters. *Different from CON ( p <0.05).
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of 10 AM 5-HT HCl. Protein concentrations of the final

dilution used in the assay were determined (Lowry et al.,

1951).

2.6. Data analysis

The primary data for the acoustic startle experiments

were peak startle amplitudes following onset of the noise

burst. The acoustic startle data were not normally distributed

(Shapiro–Wilk test, p <0.05) and further analysis was

conducted using Newman–Keuls Analog for Multiple

Comparisons Test for the experiments shown in Figs. 1–

3. The primary data for the radioligand binding experiments

were Bmax (fmol/mg protein) and KD (nM), shown in Table

1. The radioligand binding data were analyzed using non-

linear regression analysis in order to calculate Bmax and KD

for individual rats. Group means were compared by

Student’s t-test. The acoustic startle data was analyzed

using GB-STAT\ Version 7 and the radioligand binding

data was analyzed using GraphPad Prism\ Version 3.
3. Results

3.1. Acoustic startle responding

Fig. 1 shows the effects of 0–8 mg/kg 8-OH-DPAT on

acoustic startle amplitudes. Examination of the acoustic

startle amplitude within session at the 8 mg/kg dose

indicated that the greatest elevation occurred during the

first 30 min of the session, relative to the responses

measured after vehicle administration, and subsequent

analysis was restricted to this time period. Using the

Newman–Keuls analog test, comparison of startle ampli-

tudes after vehicle administration indicated that startle

amplitudes were not different between PS and CON rats

(t <0.5). Further analysis found that, although there was a

trend for elevated startle amplitudes in the CON group, none

of the doses of 8-OH-DPAT significantly elevated startle

amplitudes above those measured after vehicle administra-

tion (all t<2.2). In the PS group, only the highest dose (8

mg/kg) significantly elevated startle amplitudes above those

measured after vehicle administration (t =4.3963, p <0.05).

Moreover, at the 8 mg/kg dose, the elevation in startle

amplitudes was significantly greater in the PS rats than the

CON rats treated with the same dose (t=2.5788, p <0.05).
The lack of statistically significant elevations of startle

amplitudes in the CON rats prompted the use of a larger

dose of 8-OH-DPAT for further comparison. Using a

between-groups design in behaviorally naı̈ve rats, we

examined the effects of 16 mg/kg 8-OH-DPAT. Again,

startle amplitudes after vehicle administration were similar

(t <1.9). Newman–Keuls analog test found that 8-OH-

DPAT increased startle amplitudes in both groups (both t >

3.5, p <0.05). Furthermore, it was found that startle

amplitudes were greater in the PS rats than the CON rats

after administration of 16 mg/kg (t =2.9397, p <0.05).

Neither higher doses nor more rats were tested due to the

high likelihood of 8-OH-DPAT-induced toxicity (Hjorth,

1985; Evenden and Angeby-Moller, 1990; Bill et al., 1991;

Blanchard et al., 1993).

Fig. 3 shows the results of WAY-100635 on acoustic

startle amplitudes in PS and CON rats. Examination of the

within session time course of these data indicated that a

depression in acoustic startle responses occurred during the

last 30 min of the session, relative to the vehicle control, and

subsequent analysis was performed on data from this time

period. As noted above, startle amplitudes following vehicle

administration were not different between PS and CON rats

(t <0.2). The highest dose of WAY-100635 depressed startle

amplitudes in the CON rats relative to the vehicle control

(t =2.8674, p <0.05). However, at either dose, startle

amplitudes were not depressed in the PS rats (both t <1.6).

3.2. Radioligand binding

Table 1 shows the results of the radioligand binding

studies. In the hippocampus, the PS rats had a significant

decrease in Bmax when compared to the CON rats (t= 2.075,

p =0.0422), indicating reduced receptor density in the

hippocampus of PS rats. Analysis of the KD values in

hippocampal homogenates indicated they were not signifi-

cantly different (t =0.6388, p >0.5). In the amygdala

samples, differences between the groups were not detected

in either measure (Bmax: t =0.1297, p > 0.8; KD: t= 0.5692,

p >0.5). The values calculated for Bmax and KD are in

agreement with previously published data for the hippo-

campus and amygdala (Chalmers and Watson, 1991;

Nenonene et al., 1994; Popova et al., 1998).
4. Discussion

We found that administration of a 5-HT1A agonist, 8-

OH-DPAT, dose dependently elevated acoustic startle

amplitudes in PS and CON rats. PS rats showed larger

elevations in startle amplitudes at the two highest doses

compared to the CON rats. On the other hand, the 5-HT1A

antagonist, WAY-100635, depressed startle amplitudes in

the CON rats but not the PS rats. In addition, using

radioligand binding techniques, we found that specific

binding of [3H]-8-OH-DPAT to hippocampal homogenates
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was significantly reduced in the PS rats compared to CON

rats, but that [3H]-8-OH-DPAT binding was unchanged in

the amygdala of PS rats.

Consistent with our previous report (White and Birkle,

2001), baseline (i.e. vehicle treatment) acoustic startle

responding was not different between CON and PS rats.

Upon administration of 8-OH-DPAT, there was a dose-

dependent increase in acoustic startle amplitudes as pre-

viously found (Svensson, 1985; Czyrak et al., 2003). The

increase in startle amplitudes was larger in the PS rats at the

two highest doses. Although the maximum dose–response

function was not defined in these experiments, the data

suggest a leftward shift in the dose–response function for

the PS rats. The dose-dependent elevation in acoustic startle

amplitudes by 8-OH-DPAT would be considered an anxio-

genic response (Koch, 2000) and larger increases in startle

amplitudes are consistent with the hypothesis that PS rats

are more fearful.

It is uncertain what mechanism may account for the

enhanced startle amplitudes of the PS rats after admin-

istration of 8-OH-DPAT. An intriguing possibility is

suggested by a report showing lesions of the raphe nuclei

lead to elevated acoustic startle responding (Davis and

Sheard, 1974) and the implication is that intact, serotonergic

cell bodies projecting from the raphe nuclei exert an

inhibitory influence on startle responding. Since the 5-

HT1A receptors in the dorsal raphe function as autorecep-

tors to reduce serotonergic neuronal activity (Fletcher et al.,

1993), it is reasonable to hypothesize that administration of

8-OH-DPAT reduces neuronal activity in the raphe nuclei,

leading to elevated startle amplitudes. That this effect is

more pronounced in the PS rats would indicate that the 5-

HT1A receptor system is more sensitive to modulation by 8-

OH-DPAT in this group. Clearly, more experiments are

needed to strengthen this hypothesis. Finally, given that 8-

OH-DPAT was administered systemically, the possible

involvement of 5-HT7 receptors, for which 8-OH-DPAT

has partial agonist activity (Wood et al., 2000), cannot be

ruled out. The influence of 5-HT7 receptors on acoustic

startle responding is unknown.

The 5-HT1A antagonist, WAY-100635, depressed startle

responding in the CON rats but not in the PS rats. The

depression of startle amplitudes in the CON rats is

consistent with an earlier report in which WAY-100635

depressed both baseline and potentiated startle amplitudes in

Wistar rats (Joordens et al., 1998). However, the reason for

this depression is unknown since evidence indicates that

administration of WAY-100635 does not produce measura-

ble responses in several behavioral and physiological

paradigms related to 5-HT1A receptor function (Forster et

al., 1995; Gozlan et al., 1995; Fletcher et al., 1996). Instead,

the present results may support the idea that WAY-100635

interacts with neurotransmitter systems, such as the dop-

aminegic system, to reduce startle amplitudes (Jackson et

al., 1998; Joordens et al., 1998). Previous studies indicated

that activation of D1- and D2-like receptors increase startle
responding (Naudin et al., 1990; Svensson, 1990). More-

over, it has been demonstrated that prenatal stress alters

dopamine turnover, dopaminergic laterality and dopaminer-

gic interhemispheric coupling (Fride and Weinstock, 1987,

1988, 1989). Although speculative, these studies suggest

that differences between CON and PS rats on acoustic startle

responding after treatment with WAY-100635 could be due,

at least in part, to differences in dopaminergic modulation of

the startle response.

In the radioligand binding experiments we found that

[3H]-8-OH-DPAT binding was reduced in the hippocampus

of PS rats, indicating that prenatal stress was associated with

reduced 5-HT1A receptor density in this region. Our finding

is consistent with reduced [3H]5-HT binding in the hippo-

campus of PS rats found previously (Peters, 1986b) and

provides specific information about what portion of the

serotonin receptor pool is reduced in PS rats. Additionally,

the 30% reduction in receptor density we report is consistent

with the 32% reduction in dendritic spine density in the

hippocampus of PS rats reported earlier (Hayashi et al.,

1998) and suggests that reduced 5-HT1A receptor density is

secondary to reduced dendritic spine density.

The reason for reduced 5-HT1A receptor density in the

hippocampus of PS rats was not addressed by this study.

However, the hippocampus is particularly susceptible to

stress-induced damage, evidenced by findings such as

reduced synaptic density (McEwen et al., 1992; Magarinos

et al., 1997; McEwen and Magarinos, 1997). In addition, it

was previously reported that systemic administration of

corticosterone reduces 5-HT1A receptor density in the

hippocampus of rats (Takao et al., 1997; Czyrak et al.,

2003). Furthermore, PS rats are known to have greater

stress-induced elevations of corticosterone than CON rats

(Peters, 1982; Henry et al., 1994; Barbazanges et al., 1996;

Vallee et al., 1997; Weinstock et al., 1998). Taken together,

these reports suggest that the greater levels of circulating

corticosterone may be the ultimate cause of reduced 5-

HT1A receptor density in the hippocampus of PS rats

relative to the CON rats.

We did not find a difference in [3H]-8-OH-DPAT binding

in homogenates of the amygdala, indicating that 5-HT1A

receptor density was not affected by prenatal stress in this

region. In addition, the results imply that the same

mechanism serving to reduce 5-HT1A receptor density in

the hippocampus of PS rats is not operative in the amygdala.

Previous reports from our laboratory identified neurobio-

logical changes in the amygdala associated with prenatal

stress. These changes include increased corticotropin-

releasing hormone content and release (Cratty et al., 1995)

as well as an increased numbers of neurons and glia

specifically in the lateral amygdala of PS rats (Salm et al.,

2004). Although we hypothesized a decrease in 5-HT1A

receptor density based on the fearful behavioral phenotype

of PS rats, given our previous finding of increased cellular

population in the lateral amygdala, we could have found an

increase in 5-HT1A receptor density. However, block
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dissection of tissue in the current study did not allow

examination of [3H]-8-OH-DPAT binding in specific sub-

regions of the amygdala or immediately adjacent regions. In

fact, a previous study found that chronic administration of

corticosterone reduced 8-OH-DPAT specific binding in the

entorhinal cortex (Czyrak et al., 2003), a region included in

block dissections containing the amygdala. Therefore, the

possibility remains open that there is differential expression

of 5-HT1A receptors within the amygdala and surrounding

regions in the brains of PS rats.

In conclusion, our findings extend earlier studies of the

serotonergic system by examining the 5-HT1A receptor

subtype. Using a relatively selective agonist for 5-HT1A

receptors, 8-OH-DPAT, we found an enhancement of

acoustic startle responding in PS rats relative to CON rats.

Interestingly, the antagonist WAY-100635 reduced startle

amplitudes in the CON rats but not the PS rats. Finally, we

found that 5-HT1A receptor density was reduced in the

hippocampus of PS rats but not in the amygdala.
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